
A Principled Approach for Learning Task

Similarity in Multitask Learning

Changjian Shui†, Mahdieh Abbasi†, Louis-Émile Robitaille†,
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Multitask learning (MTL)

• MTL: learning a set of related tasks by using shared knowledge;

• Shared knowledge can improve the performance compared with

learning individual tasks independently;

• How to express the shared knowledge?
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Using task similarity as shared knowledge

MNIST

USPS

SVHN

• Intuition: Tasks that are alike should be treated alike
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Our Contributions

• Theoretically prove the benefits of considering the task

similarity: controlling the generalization error;

• A new training algorithm on deep neural network, based on the
theoretical results

• Developed for two task similarity metrics:

• H-divergence;
• Wasserstein distance.
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Problem setup

• Find T hypothesis {ht}Tt=1 from {D̂t := (xi , yi )
m
i=1}Tt=1;

• Generalization error:
1
T

∑T
t=1 Rt(ht) with Rt(ht) = E(x ,y)∼Dt

`(ht(x), y);

• Relation coefficients: {αt}Tt=1, each αt is T simplex;

• Empirical weighted loss for each task t:

R̂αt (h) =
∑T

i=1 αt [i ]R̂i (h), R̂i (h) = 1
m

∑
(x ,y)∼D̂i

`(h(x), y)

MNIST

USPS
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Theoretical Result

Theorem (Wasserstein-1 distance, informal)

Supposing transport cost c(x, y) = ‖x− y‖2, with high probability

≥ 1− δ, we have:

1

T

T∑
t=1

Rt(ht) ≤
1

T

T∑
t=1

R̂αt (ht)︸ ︷︷ ︸
Weighted empirical loss

+ C1

T∑
t=1

‖αt‖2︸ ︷︷ ︸
Coefficient regularization

+
2K

T

T∑
t=1

T∑
i=1

αt [i ]W1(D̂t , D̂i )︸ ︷︷ ︸
Empirical distribution distance

+ C2 +
1

T

T∑
t=1

T∑
i=1

αt [i ]λt,i︸ ︷︷ ︸
Complexity & optimal expected loss

C1 and C2 are constants related with Lipschtiz constant K ,

pseudo-dim d , m, T and δ.

Similar theoretical results with H-divergence.
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Key factors from the bounds

1

T

T∑
t=1

R̂αt (ht)︸ ︷︷ ︸
Weighted empirical loss

+
2K

T

T∑
t=1

T∑
i=1

αt [i ]W1(D̂t , D̂i )︸ ︷︷ ︸
Empirical distribution distance

+ C1

T∑
t=1

‖αt‖2︸ ︷︷ ︸
Coefficient regularization

+ C2 +
1

T

T∑
t=1

T∑
i=1

αt [i ]λt,i︸ ︷︷ ︸
Complexity & optimal expected loss

• According to the theoretical results, we should:

1. Minimize the weighted prediction loss for each task,
1
T

∑T
t=1 R̂αt (ht);

2. Minimize the weighted pairwise-distribution divergence,
1
T

∑T
t=1

∑T
i=1 αt,id(D̂t , D̂i );

3. Control the relation coefficient {αt}Tt=1 (regularization term)∑T
t=1 ‖αt‖2.

• Underlying assumptions: optimal expected loss
1
T

∑T
t=1

∑T
i=1 αt,iλt,i is much smaller than the empirical term.
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Training Adversarial MultiTask Neural Network (AMTNN)

Feature extractor 

Task 1

Task T
Task  
Loss 

Adversarial 
Loss 

Gradient 
Reversal 

• A new training algorithm based on the mentioned factors;

• Task loss: weighted empirical loss;

• Adversarial loss: empirical distribution distance.
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Alternative training strategy

• Two kinds of parameters:

• Neural networks parameters: θf (feature extractor); θh
·

(predictor); θd
· (discriminator);

• Relation coefficients: α1, . . . ,αT .

• Alternative updating:

1. Given a fixed coefficients, training adversarial multitask neural

network;

2. Given a fixed neural network, estimate {αt}Tt=1 through solving

a convex optimization problem.
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Empirical validation: digits recognition

3K 5K 8K

Approach MNIST MNIST M SVHN Average. MNIST MNIST M SVHN Average MNIST MNIST M SVHN Average

MTL uni 93.23 76.85 57.20 75.76 97.41 77.72 67.86 81.00 97.73 83.05 71.19 83.99

MTL weighted 89.09 73.69 68.63 77.13 91.43 74.07 73.81 79.77 92.01 76.69 73.77 80.82

MTL disH 89.91 81.13 70.31 80.45 91.92 82.68 73.27 82.62 92.96 85.04 78.50 85.50

MTL disW 96.77 80.38 68.40 81.85 95.47 83.48 72.66 83.87 98.09 84.13 74.37 85.53

AMTNN H 97.47 77.87 71.26 82.20 97.94 76.28 76.06 83.43 98.28 82.75 76.63 85.89

AMTNN W 97.20 80.70 76.93 84.95 97.67 82.50 76.36 85.51 98.01 82.53 79.97 86.84

• Improved performance (∼ 1− 2%), particularly on the SVHN

(∼ 4− 6%);

• Similar results on the Amazon review dataset.
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Robust and interpretable relation coefficient

Mnist
SVHN

MnistM
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SVHN

MnistM
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(a) Wasserstein
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(b) H-divergence

• Asymmetric relation coefficients

• For task MNIST, SVHN is not helpful;

• For task SVHN, MNIST is helpful.
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Role of weighted sum

t-SNE plot of task

MNIST.

Red: MNIST;

Blue: MNIST M;

Green: SVHN.

Similar task naturally extends the decision boundary of the original

task.
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Thank You

Thanks for listening, for more information:

• Come and see the poster

• Paper link: https://arxiv.org/abs/1903.09109
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