A Principled Approach for Learning Task Similarity in Multitask Learning

Changjian Shui[†], Mahdieh Abbasi[†], Louis-Émile Robitaille[†], Boyu Wang[‡], Christian Gagné[†] LICAI 2019

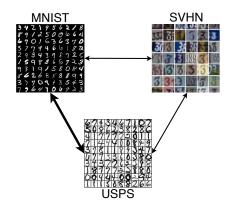
Multitask learning (MTL)

• MTL: learning a set of *related* tasks by using shared knowledge;

- MTL: learning a set of related tasks by using shared knowledge;
- Shared knowledge can improve the performance compared with learning individual tasks independently;

- MTL: learning a set of related tasks by using shared knowledge;
- Shared knowledge can improve the performance compared with learning individual tasks independently;
- How to express the shared knowledge?

Using task similarity as shared knowledge



• Intuition: Tasks that are alike should be treated alike

• Theoretically prove the benefits of considering the task similarity: controlling the generalization error;

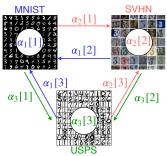
- Theoretically prove the benefits of considering the task similarity: controlling the generalization error;
- A new training algorithm on deep neural network, based on the theoretical results
 - Developed for two task similarity metrics:
 - *H*-divergence;
 - Wasserstein distance.

• Find *T* hypothesis $\{h_t\}_{t=1}^T$ from $\{\hat{\mathcal{D}}_t := (x_i, y_i)_{i=1}^m\}_{t=1}^T$;

- Find T hypothesis $\{h_t\}_{t=1}^T$ from $\{\hat{\mathcal{D}}_t := (x_i, y_i)_{i=1}^m\}_{t=1}^T$;
- Generalization error: $\frac{1}{T} \sum_{t=1}^{T} R_t(h_t) \text{ with } R_t(h_t) = \mathbb{E}_{(x,y) \sim \mathcal{D}_t} \ell(h_t(\mathbf{x}), y);$

- Find T hypothesis $\{h_t\}_{t=1}^T$ from $\{\hat{\mathcal{D}}_t := (x_i, y_i)_{i=1}^m\}_{t=1}^T$;
- Generalization error: $\frac{1}{T} \sum_{t=1}^{T} R_t(h_t) \text{ with } R_t(h_t) = \mathbb{E}_{(x,y)\sim \mathcal{D}_t} \ell(h_t(\mathbf{x}), y);$
- Relation coefficients: $\{\alpha_t\}_{t=1}^T$, each α_t is T simplex;

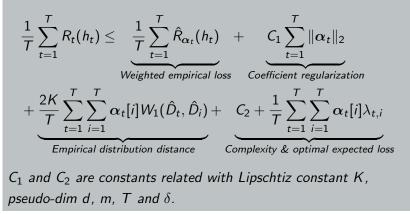
- Find T hypothesis $\{h_t\}_{t=1}^T$ from $\{\hat{\mathcal{D}}_t := (x_i, y_i)_{i=1}^m\}_{t=1}^T$;
- Generalization error: $\frac{1}{T} \sum_{t=1}^{T} R_t(h_t) \text{ with } R_t(h_t) = \mathbb{E}_{(x,y)\sim \mathcal{D}_t} \ell(h_t(\mathbf{x}), y);$
- Relation coefficients: $\{\alpha_t\}_{t=1}^T$, each α_t is T simplex;
- Empirical weighted loss for each task *t*: $\hat{R}_{\alpha_t}(h) = \sum_{i=1}^{T} \alpha_t[i] \hat{R}_i(h), \ \hat{R}_i(h) = \frac{1}{m} \sum_{(x,y) \sim \hat{D}_i} \ell(h(x), y)$



Theoretical Result

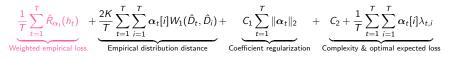
Theorem (Wasserstein-1 distance, informal)

Supposing transport cost $c(\mathbf{x}, \mathbf{y}) = \|\mathbf{x} - \mathbf{y}\|_2$, with high probability $\geq 1 - \delta$, we have:



Similar theoretical results with \mathcal{H} -divergence.

Key factors from the bounds



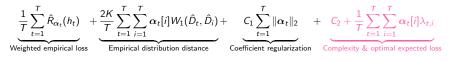
- According to the theoretical results, we should:
 - 1. Minimize the weighted prediction loss for each task, $\frac{1}{T} \sum_{t=1}^{T} \hat{R}_{\alpha_t}(h_t);$

- According to the theoretical results, we should:
 - 1. Minimize the weighted prediction loss for each task, $\frac{1}{T}\sum_{t=1}^{T}\hat{R}_{\alpha_{t}}(h_{t});$
 - 2. Minimize the weighted pairwise-distribution divergence, $\frac{1}{T} \sum_{t=1}^{T} \sum_{i=1}^{T} \alpha_{t,i} d(\hat{D}_t, \hat{D}_i);$

Key factors from the bounds

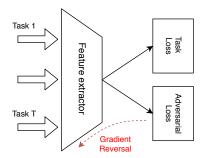
- According to the theoretical results, we should:
 - 1. Minimize the weighted prediction loss for each task, $\frac{1}{T}\sum_{t=1}^{T}\hat{R}_{\alpha_{t}}(h_{t});$
 - 2. Minimize the weighted pairwise-distribution divergence, $\frac{1}{T}\sum_{t=1}^{T}\sum_{i=1}^{T} \alpha_{t,i} d(\hat{D}_t, \hat{D}_i);$
 - 3. Control the relation coefficient $\{\alpha_t\}_{t=1}^{T}$ (regularization term) $\sum_{t=1}^{T} \|\alpha_t\|_2$.

Key factors from the bounds



- According to the theoretical results, we should:
 - 1. Minimize the weighted prediction loss for each task, $\frac{1}{T} \sum_{t=1}^{T} \hat{R}_{\alpha_t}(h_t);$
 - 2. Minimize the weighted pairwise-distribution divergence, $\frac{1}{T} \sum_{t=1}^{T} \sum_{i=1}^{T} \alpha_{t,i} d(\hat{D}_{t}, \hat{D}_{i});$
 - 3. Control the relation coefficient $\{\alpha_t\}_{t=1}^{T}$ (regularization term) $\sum_{t=1}^{T} \|\alpha_t\|_2$.
- Underlying assumptions: optimal expected loss $\frac{1}{T} \sum_{t=1}^{T} \sum_{i=1}^{T} \alpha_{t,i} \lambda_{t,i}$ is much smaller than the empirical term.

Training Adversarial MultiTask Neural Network (AMTNN)



- A new training algorithm based on the mentioned factors;
- Task loss: weighted empirical loss;
- Adversarial loss: empirical distribution distance.

- Two kinds of parameters:
 - Neural networks parameters: θ^f (feature extractor); θ^h_.
 (predictor); θ^d_. (discriminator);

- Two kinds of parameters:
 - Neural networks parameters: θ^f (feature extractor); θ^h_.
 (predictor); θ^d_. (discriminator);
 - Relation coefficients: $\alpha_1, \ldots, \alpha_T$.

- Two kinds of parameters:
 - Neural networks parameters: θ^f (feature extractor); θ^h_.
 (predictor); θ^d_. (discriminator);
 - Relation coefficients: $\alpha_1, \ldots, \alpha_T$.
- Alternative updating:
 - 1. Given a fixed coefficients, training adversarial multitask neural network;

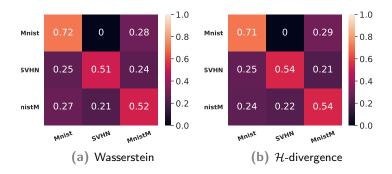
- Two kinds of parameters:
 - Neural networks parameters: θ^f (feature extractor); θ^h_.
 (predictor); θ^d_. (discriminator);
 - Relation coefficients: $\alpha_1, \ldots, \alpha_T$.
- Alternative updating:
 - 1. Given a fixed coefficients, training adversarial multitask neural network;
 - 2. Given a fixed neural network, estimate $\{\alpha_t\}_{t=1}^T$ through solving a convex optimization problem.

Empirical validation: digits recognition

	ЗК				5K				8K			
Approach	MNIST	MNIST_M	SVHN	Average.	MNIST	MNIST_M	SVHN	Average	MNIST	MNIST_M	SVHN	Average
MTL_uni	93.23	76.85	57.20	75.76	97.41	77.72	67.86	81.00	97.73	83.05	71.19	83.99
MTL_weighted	89.09	73.69	68.63	77.13	91.43	74.07	73.81	79.77	92.01	76.69	73.77	80.82
MTL_disH	89.91	81.13	70.31	80.45	91.92	82.68	73.27	82.62	92.96	85.04	78.50	85.50
MTL_disW	96.77	80.38	68.40	81.85	95.47	83.48	72.66	83.87	98.09	84.13	74.37	85.53
AMTNN_H	97.47	77.87	71.26	82.20	97.94	76.28	76.06	83.43	98.28	82.75	76.63	85.89
AMTNN_W	97.20	80.70	76.93	84.95	97.67	82.50	76.36	85.51	98.01	82.53	79.97	86.84

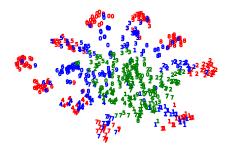
- Improved performance ($\sim 1-2\%),$ particularly on the SVHN ($\sim 4-6\%);$
- Similar results on the Amazon review dataset.

Robust and interpretable relation coefficient



- Asymmetric relation coefficients
- For task MNIST, SVHN is not helpful;
- For task SVHN, MNIST is helpful.

Role of weighted sum



t-SNE plot of task MNIST. Red: MNIST; Blue: MNIST_M; Green: SVHN.

Similar task naturally extends the decision boundary of the original task.

Thanks for listening, for more information:

- Come and see the poster
- Paper link: https://arxiv.org/abs/1903.09109