A Principled Approach for Learning Task Similarity in Multitask Learning

Changjian Shui ${ }^{\dagger}$, Mahdieh Abbasi ${ }^{\dagger}$, Louis-Émile Robitaille ${ }^{\dagger}$, Boyu Wang ${ }^{\ddagger}$, Christian Gagné ${ }^{\dagger}$

IJCAI 2019
\dagger

\ddagger
艮Penn

Multitask learning (MTL)

- MTL: learning a set of related tasks by using shared knowledge;

Multitask learning (MTL)

- MTL: learning a set of related tasks by using shared knowledge;
- Shared knowledge can improve the performance compared with learning individual tasks independently;

Multitask learning (MTL)

- MTL: learning a set of related tasks by using shared knowledge;
- Shared knowledge can improve the performance compared with learning individual tasks independently;
- How to express the shared knowledge?

Using task similarity as shared knowledge

- Intuition: Tasks that are alike should be treated alike

Our Contributions

- Theoretically prove the benefits of considering the task similarity: controlling the generalization error;

Our Contributions

- Theoretically prove the benefits of considering the task similarity: controlling the generalization error;
- A new training algorithm on deep neural network, based on the theoretical results
- Developed for two task similarity metrics:
- \mathcal{H}-divergence;
- Wasserstein distance.

Problem setup

- Find T hypothesis $\left\{h_{t}\right\}_{t=1}^{T}$ from $\left\{\hat{\mathcal{D}}_{t}:=\left(x_{i}, y_{i}\right)_{i=1}^{m}\right\}_{t=1}^{T}$;

Problem setup

- Find T hypothesis $\left\{h_{t}\right\}_{t=1}^{T}$ from $\left\{\hat{\mathcal{D}}_{t}:=\left(x_{i}, y_{i}\right)_{i=1}^{m}\right\}_{t=1}^{T}$;
- Generalization error:

$$
\frac{1}{T} \sum_{t=1}^{T} R_{t}\left(h_{t}\right) \text { with } R_{t}\left(h_{t}\right)=\mathbb{E}_{(x, y) \sim \mathcal{D}_{t}} \ell\left(h_{t}(\mathbf{x}), y\right)
$$

Problem setup

- Find T hypothesis $\left\{h_{t}\right\}_{t=1}^{T}$ from $\left\{\hat{\mathcal{D}}_{t}:=\left(x_{i}, y_{i}\right)_{i=1}^{m}\right\}_{t=1}^{T}$;
- Generalization error:
$\frac{1}{T} \sum_{t=1}^{T} R_{t}\left(h_{t}\right)$ with $R_{t}\left(h_{t}\right)=\mathbb{E}_{(x, y) \sim \mathcal{D}_{t}} \ell\left(h_{t}(\mathbf{x}), y\right)$;
- Relation coefficients: $\left\{\boldsymbol{\alpha}_{t}\right\}_{t=1}^{T}$, each $\boldsymbol{\alpha}_{t}$ is T simplex;

Problem setup

- Find T hypothesis $\left\{h_{t}\right\}_{t=1}^{T}$ from $\left\{\hat{\mathcal{D}}_{t}:=\left(x_{i}, y_{i}\right)_{i=1}^{m}\right\}_{t=1}^{T}$;
- Generalization error:
$\frac{1}{T} \sum_{t=1}^{T} R_{t}\left(h_{t}\right)$ with $R_{t}\left(h_{t}\right)=\mathbb{E}_{(x, y) \sim \mathcal{D}_{t}} \ell\left(h_{t}(\mathbf{x}), y\right)$;
- Relation coefficients: $\left\{\boldsymbol{\alpha}_{t}\right\}_{t=1}^{T}$, each $\boldsymbol{\alpha}_{t}$ is T simplex;
- Empirical weighted loss for each task t :
$\hat{R}_{\boldsymbol{\alpha}_{t}}(h)=\sum_{i=1}^{T} \boldsymbol{\alpha}_{t}[i] \hat{R}_{i}(h), \hat{R}_{i}(h)=\frac{1}{m} \sum_{(x, y) \sim \hat{D}_{i}} \ell(h(x), y)$

Theoretical Result

Theorem (Wasserstein-1 distance, informal)

Supposing transport cost $c(\mathbf{x}, \mathbf{y})=\|\mathbf{x}-\mathbf{y}\|_{2}$, with high probability $\geq 1-\delta$, we have:

$$
\frac{1}{T} \sum_{t=1}^{T} R_{t}\left(h_{t}\right) \leq \underbrace{\frac{1}{T} \sum_{t=1}^{T} \hat{R}_{\boldsymbol{\alpha}_{t}}\left(h_{t}\right)}_{\text {Weighted empirical loss }}+\underbrace{C_{1} \sum_{t=1}^{T}\left\|\boldsymbol{\alpha}_{t}\right\|_{2}}_{\text {Coefficient regularization }}
$$

$$
+\underbrace{\frac{2 K}{T} \sum_{t=1}^{T} \sum_{i=1}^{T} \boldsymbol{\alpha}_{t}[i] W_{1}\left(\hat{D}_{t}, \hat{D}_{i}\right)}_{\text {Empirical distribution distance }}+\underbrace{C_{2}+\frac{1}{T} \sum_{t=1}^{T} \sum_{i=1}^{T} \boldsymbol{\alpha}_{t}[i] \lambda_{t, i}}_{\text {Complexity \& optimal expected loss }}
$$

C_{1} and C_{2} are constants related with Lipschtiz constant K, pseudo-dim d, m, T and δ.

Similar theoretical results with \mathcal{H}-divergence.

Key factors from the bounds

$\underbrace{\frac{1}{T} \sum_{t=1}^{T} \hat{R}_{\alpha_{t}}\left(h_{t}\right)}_{\text {Weighted empirical loss }}+\underbrace{\frac{2 K}{T} \sum_{t=1}^{T} \sum_{i=1}^{T} \boldsymbol{\alpha}_{t}[i] W_{1}\left(\hat{D}_{t}, \hat{D}_{i}\right)}_{\text {Empirical distribution distance }}+\underbrace{C_{1} \sum_{t=1}^{T}\left\|\boldsymbol{\alpha}_{t}\right\|_{2}}_{\text {Coefficient regularization }}+\underbrace{C_{2}+\frac{1}{T} \sum_{t=1}^{T} \sum_{i=1}^{T} \boldsymbol{\alpha}_{t}[i] \lambda_{t, i}}_{\text {Complexity } \& \text { optimal expected loss }}$

- According to the theoretical results, we should:

1. Minimize the weighted prediction loss for each task,

$$
\frac{1}{T} \sum_{t=1}^{T} \hat{R}_{\alpha_{t}}\left(h_{t}\right) ;
$$

Key factors from the bounds

$\underbrace{\frac{1}{T} \sum_{t=1}^{T} \hat{R}_{\boldsymbol{\alpha}_{t}}\left(h_{t}\right)}_{\text {Weighted empirical loss }}+\underbrace{\frac{2 K}{T} \sum_{t=1}^{T} \sum_{i=1}^{T} \alpha_{t}[i] W_{1}\left(\hat{D}_{t}, \hat{D}_{i}\right)}_{\text {Empirical distribution distance }}+\underbrace{C_{1} \sum_{t=1}^{T}\left\|\boldsymbol{\alpha}_{t}\right\|_{2}}_{\text {Coefficient regularization }}+\underbrace{C_{2}+\frac{1}{T} \sum_{t=1}^{T} \sum_{i=1}^{T} \boldsymbol{\alpha}_{t}[i] \lambda_{t, i}}_{\text {Complexity } \& \text { optimal expected loss }}$

- According to the theoretical results, we should:

1. Minimize the weighted prediction loss for each task, $\frac{1}{T} \sum_{t=1}^{T} \hat{R}_{\alpha_{t}}\left(h_{t}\right) ;$
2. Minimize the weighted pairwise-distribution divergence, $\frac{1}{T} \sum_{t=1}^{T} \sum_{i=1}^{T} \alpha_{t, i} d\left(\hat{\mathcal{D}}_{t}, \hat{\mathcal{D}}_{i}\right) ;$

Key factors from the bounds

$\underbrace{\frac{1}{T} \sum_{t=1}^{T} \hat{R}_{\boldsymbol{\alpha}_{t}}\left(h_{t}\right)}_{\text {Weighted empirical loss }}+\underbrace{\frac{2 K}{T} \sum_{t=1}^{T} \sum_{i=1}^{T} \boldsymbol{\alpha}_{t}[i] W_{1}\left(\hat{D}_{t}, \hat{D}_{i}\right)}_{\text {Empirical distribution distance }}+\underbrace{C_{1} \sum_{t=1}^{T}\left\|\alpha_{t}\right\|_{2}}_{\text {Coefficient regularization }}+\underbrace{C_{2}+\frac{1}{T} \sum_{t=1}^{T} \sum_{i=1}^{T} \boldsymbol{\alpha}_{t}[i] \lambda_{t, i}}_{\text {Complexity } \& \text { optimal expected loss }}$

- According to the theoretical results, we should:

1. Minimize the weighted prediction loss for each task, $\frac{1}{T} \sum_{t=1}^{T} \hat{R}_{\alpha_{t}}\left(h_{t}\right)$;
2. Minimize the weighted pairwise-distribution divergence,

$$
\frac{1}{T} \sum_{t=1}^{T} \sum_{i=1}^{T} \boldsymbol{\alpha}_{t, i} d\left(\hat{\mathcal{D}}_{t}, \hat{\mathcal{D}}_{i}\right) ;
$$

3. Control the relation coefficient $\left\{\alpha_{t}\right\}_{t=1}^{T}$ (regularization term)

$$
\sum_{t=1}^{T}\left\|\boldsymbol{\alpha}_{t}\right\|_{2}
$$

Key factors from the bounds

- According to the theoretical results, we should:

1. Minimize the weighted prediction loss for each task, $\frac{1}{T} \sum_{t=1}^{T} \hat{R}_{\alpha_{t}}\left(h_{t}\right)$;
2. Minimize the weighted pairwise-distribution divergence,

$$
\frac{1}{T} \sum_{t=1}^{T} \sum_{i=1}^{T} \boldsymbol{\alpha}_{t, i} d\left(\hat{\mathcal{D}}_{t}, \hat{\mathcal{D}}_{i}\right) ;
$$

3. Control the relation coefficient $\left\{\boldsymbol{\alpha}_{t}\right\}_{t=1}^{T}$ (regularization term) $\sum_{t=1}^{T}\left\|\boldsymbol{\alpha}_{t}\right\|_{2}$.

- Underlying assumptions: optimal expected loss $\frac{1}{T} \sum_{t=1}^{T} \sum_{i=1}^{T} \alpha_{t, i} \lambda_{t, i}$ is much smaller than the empirical term.

Training Adversarial MultiTask Neural Network (AMTNN)

- A new training algorithm based on the mentioned factors;
- Task loss: weighted empirical loss;
- Adversarial loss: empirical distribution distance.

Alternative training strategy

- Two kinds of parameters:
- Neural networks parameters: $\boldsymbol{\theta}^{f}$ (feature extractor); $\boldsymbol{\theta}^{h}$. (predictor); $\boldsymbol{\theta}^{d}$ (discriminator);

Alternative training strategy

- Two kinds of parameters:
- Neural networks parameters: $\boldsymbol{\theta}^{f}$ (feature extractor); $\boldsymbol{\theta}^{h}$. (predictor); $\boldsymbol{\theta}^{d}$ (discriminator);
- Relation coefficients: $\boldsymbol{\alpha}_{1}, \ldots, \boldsymbol{\alpha}_{T}$.

Alternative training strategy

- Two kinds of parameters:
- Neural networks parameters: $\boldsymbol{\theta}^{f}$ (feature extractor); $\boldsymbol{\theta}^{h}$. (predictor); $\boldsymbol{\theta}^{d}$ (discriminator);
- Relation coefficients: $\boldsymbol{\alpha}_{1}, \ldots, \boldsymbol{\alpha}_{T}$.
- Alternative updating:

1. Given a fixed coefficients, training adversarial multitask neural network;

Alternative training strategy

- Two kinds of parameters:
- Neural networks parameters: $\boldsymbol{\theta}^{f}$ (feature extractor); $\boldsymbol{\theta}^{h}$. (predictor); $\boldsymbol{\theta}^{d}$ (discriminator);
- Relation coefficients: $\boldsymbol{\alpha}_{1}, \ldots, \boldsymbol{\alpha}_{T}$.
- Alternative updating:

1. Given a fixed coefficients, training adversarial multitask neural network;
2. Given a fixed neural network, estimate $\left\{\boldsymbol{\alpha}_{t}\right\}_{t=1}^{T}$ through solving a convex optimization problem.

Empirical validation: digits recognition

Approach	3K				5K				8K			
	MNIST	MNIST_M	SVHN	Average.	MNIST	MNIST_M	SVHN	Average	MNIST	MNIST_M	SVHN	Average
MTL_uni	93.23	76.85	57.20	75.76	97.41	77.72	67.86	81.00	97.73	83.05	71.19	83.99
MTL_weighted	89.09	73.69	68.63	77.13	91.43	74.07	73.81	79.77	92.01	76.69	73.77	80.82
MTL_disH	89.91	81.13	70.31	80.45	91.92	82.68	73.27	82.62	92.96	85.04	78.50	85.50
MTL_disW	96.77	80.38	68.40	81.85	95.47	83.48	72.66	83.87	98.09	84.13	74.37	85.53
AMTNN_H	97.47	77.87	71.26	82.20	97.94	76.28	76.06	83.43	98.28	82.75	76.63	85.89
AMTNN_W	97.20	80.70	76.93	84.95	97.67	82.50	76.36	85.51	98.01	82.53	79.97	86.84

- Improved performance ($\sim 1-2 \%$), particularly on the SVHN ($\sim 4-6 \%$);
- Similar results on the Amazon review dataset.

Robust and interpretable relation coefficient

- Asymmetric relation coefficients
- For task MNIST, SVHN is not helpful;
- For task SVHN, MNIST is helpful.

Role of weighted sum

t-SNE plot of task MNIST.
Red: MNIST;
Blue: MNIST_M; Green: SVHN.

Similar task naturally extends the decision boundary of the original task.

Thank You

Thanks for listening, for more information:

- Come and see the poster
- Paper link: https://arxiv.org/abs/1903.09109

