Deep Active Learning: Unified and Principled Method for Query and Training

Changjian Shui¹, Fan Zhou¹, Christian Gagné^{1,2}, Boyu Wang³

1. Université Laval; 2. Mila, Canada CIFAR AI Chair; 3 University of Western Ontario

* Mila

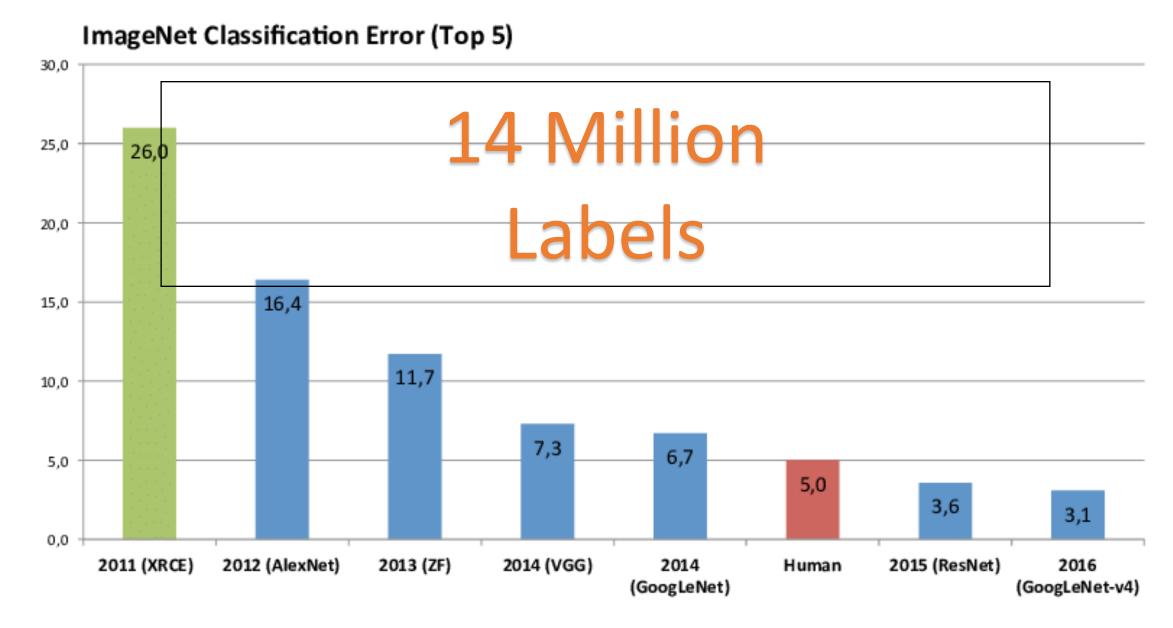
Institut intelligence et données

Í

Deep Learning

- Surpass human in many tasks
- Drawback: annotated data hungry

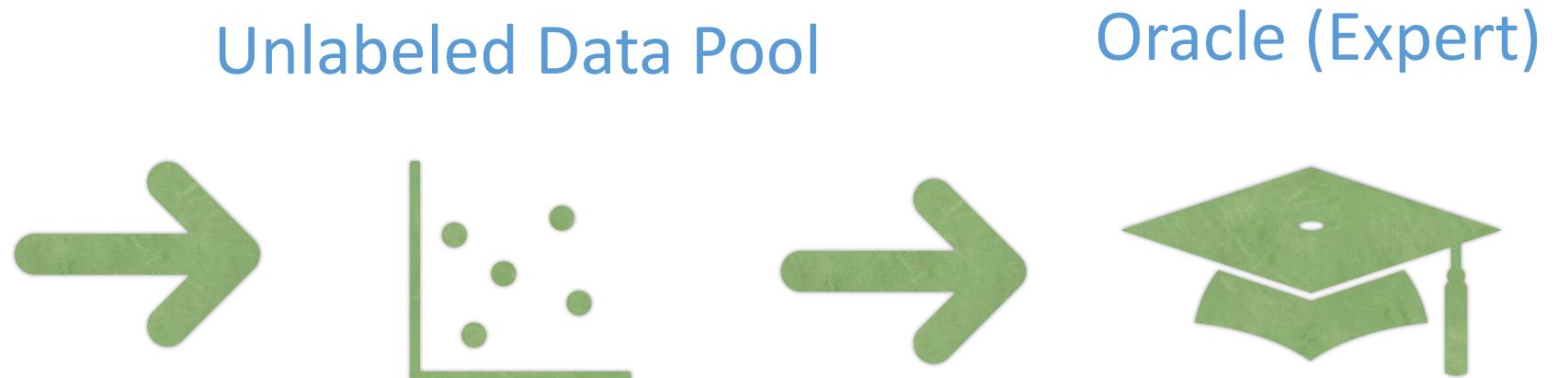
One solution: Deep Active Learning



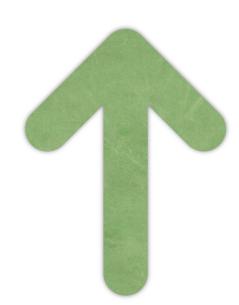
Credit: https://devopedia.org/imagenet

Active Learning (AL)

Model

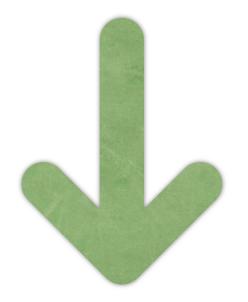


Learn from the Data



Select Most Informative Samples to Label

Real Label Annotation



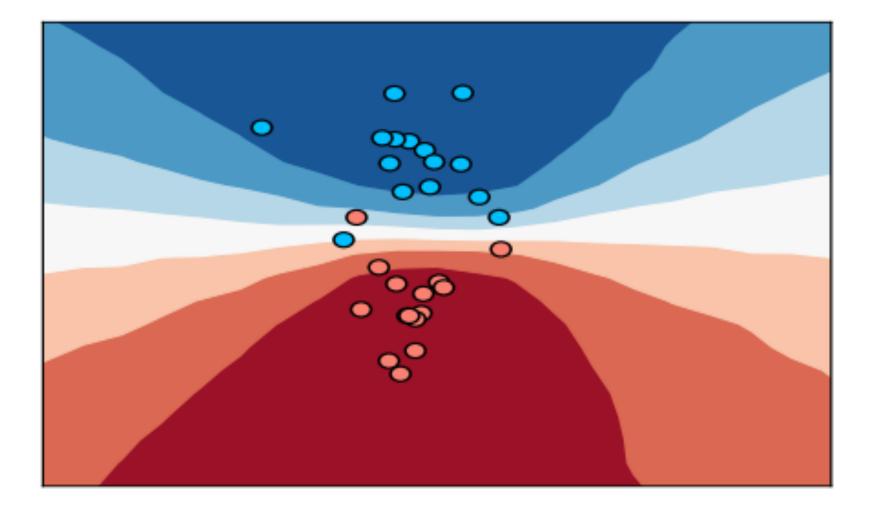
Key factors in Deep AL

- Query How to select the most informative samples ?

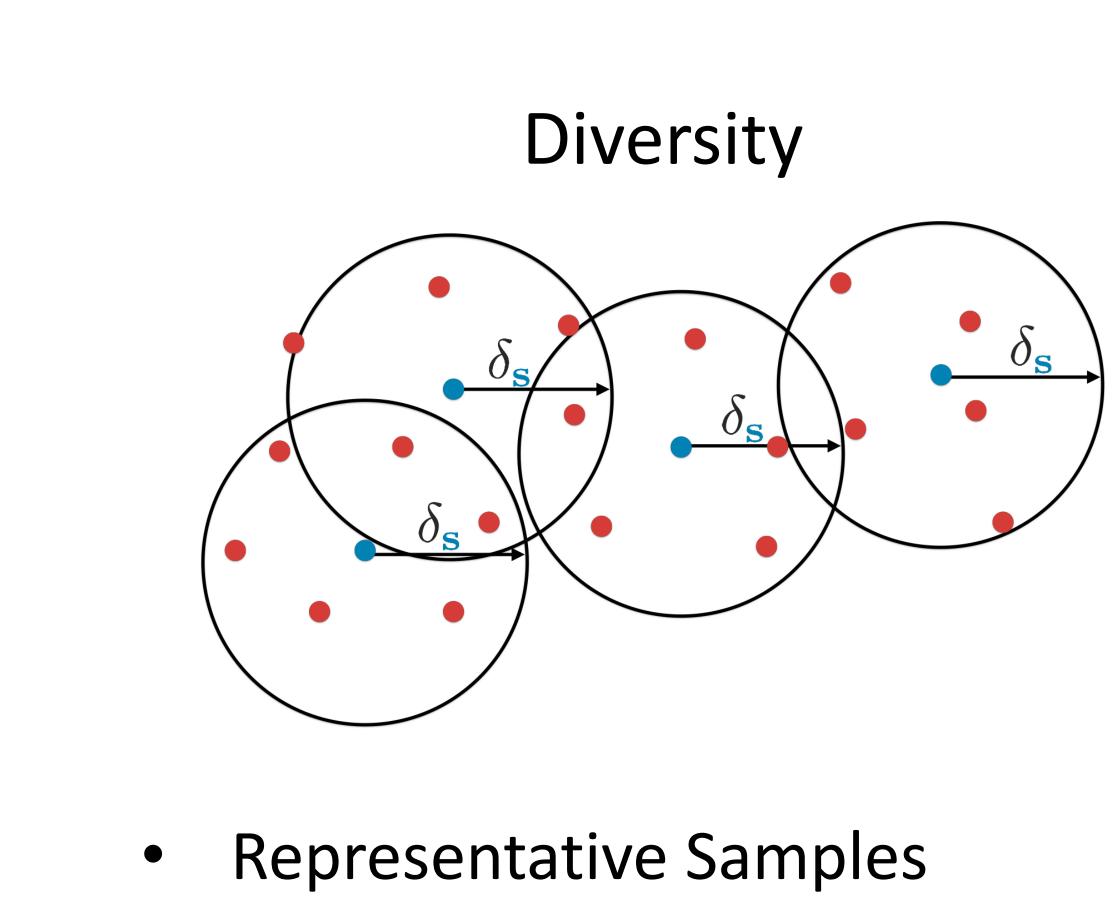
- Training How to train the model?

Query Strategy

Uncertainty



- Least Confident Samples
- Sampling Bias

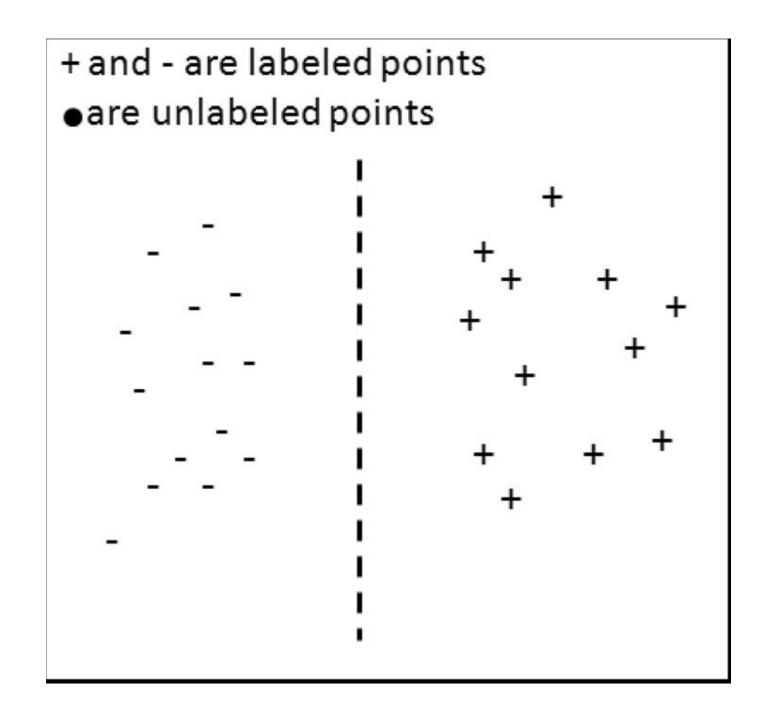


Computationally Inefficient

Sener, Ozan, and Silvio Savarese. "Active learning for convolutional neural networks: A core-set approach." ICLR, 2018

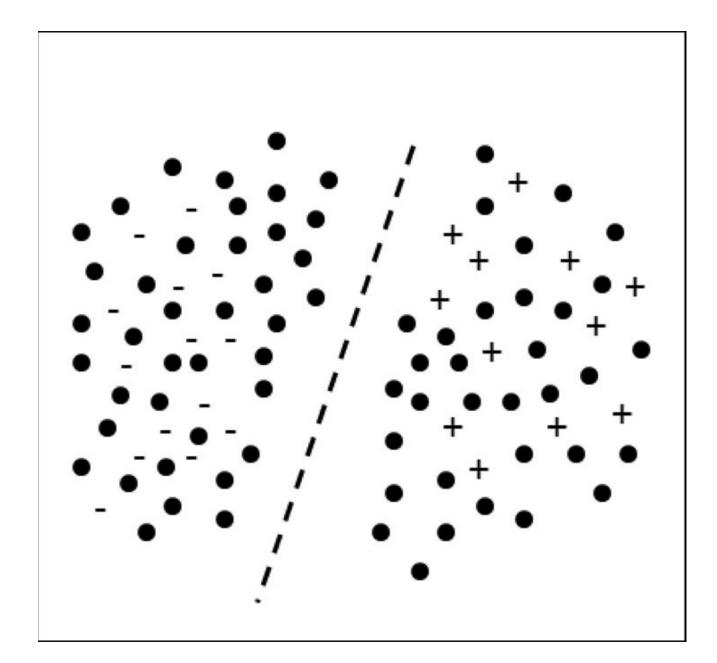
Training Strategy in Deep AL

Labelled



Simple, Efficient \bullet

Labelled + Unlabeled



Better representation

Mohammad Peikari, et.al. A Cluster-then-label Semi-supervised Learning Approach for Pathology Image Classification, Scientific Reports, 2018

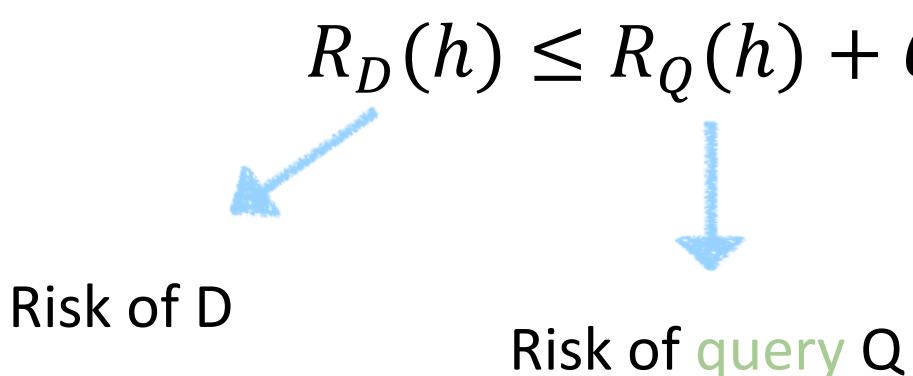
6

Summary of Our Work

- Query from the unlabeled data: Explicit strategy with Uncertain + Diverse criteria.
- Train the model: Training Strategy on the labeled + unlabeled dataset.
- Our approach is principled, unified and query efficient.

Active Learning as Distribution Matching

Data distribution D(x), Query distribution Q(x)



Wasserstein distance captures the diverse property

$R_D(h) \le R_Q(h) + C_0 W_1(D,Q) + C_1$

Distribution Similarity Wasserstein distance

Practical Loss in Deep Learning $R_Q(h) + \mu W_1(D,Q)$ $\min_{\hat{B},h} \hat{R}_{\hat{L}\cup\hat{B}}(h) + \mu W_1(\hat{L}\cup\hat{U},\hat{L}\cup\hat{B})$ Labelled Querying Unlabeled Batch \hat{B} Data \widehat{L}

Estimation via dual term (introducing citric function)

Data \widehat{U}

Loss Decomposition in Deep AL

Hypothesis h, feature learning function f, critic function g

•Training Stage

- Label Prediction Loss. $min_{f,h}$ $\hat{R}_{\hat{L}}(h,f)$
- Leverage unlabeled data.

•Query Stage

Query Batch

 $min_{\hat{B}} C_2 \hat{R}_{\hat{B}}(h,f) - C_3 \sum_{x \sim \hat{B}} g(f(x))$

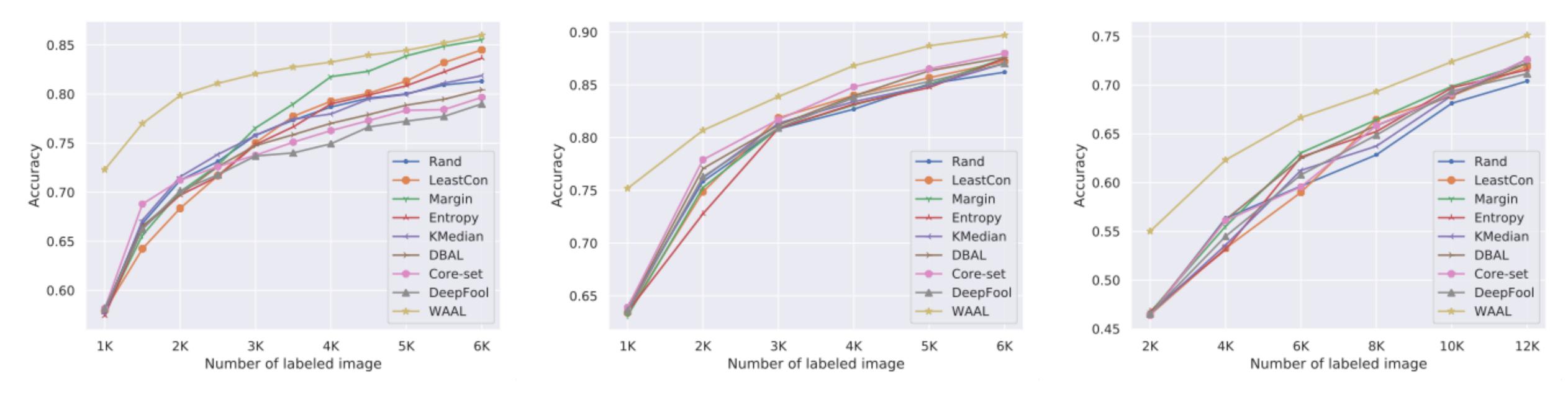
Upper Bound: Uncertainty

 $\min_{f} \max_{a} C_0 \sum_{x \sim \widehat{H}} g(f(x)) - C_1 \sum_{x \sim \widehat{L}} g(f(x))$

Diversity

Empirical Validations

Accuracy



Fashion-MNIST

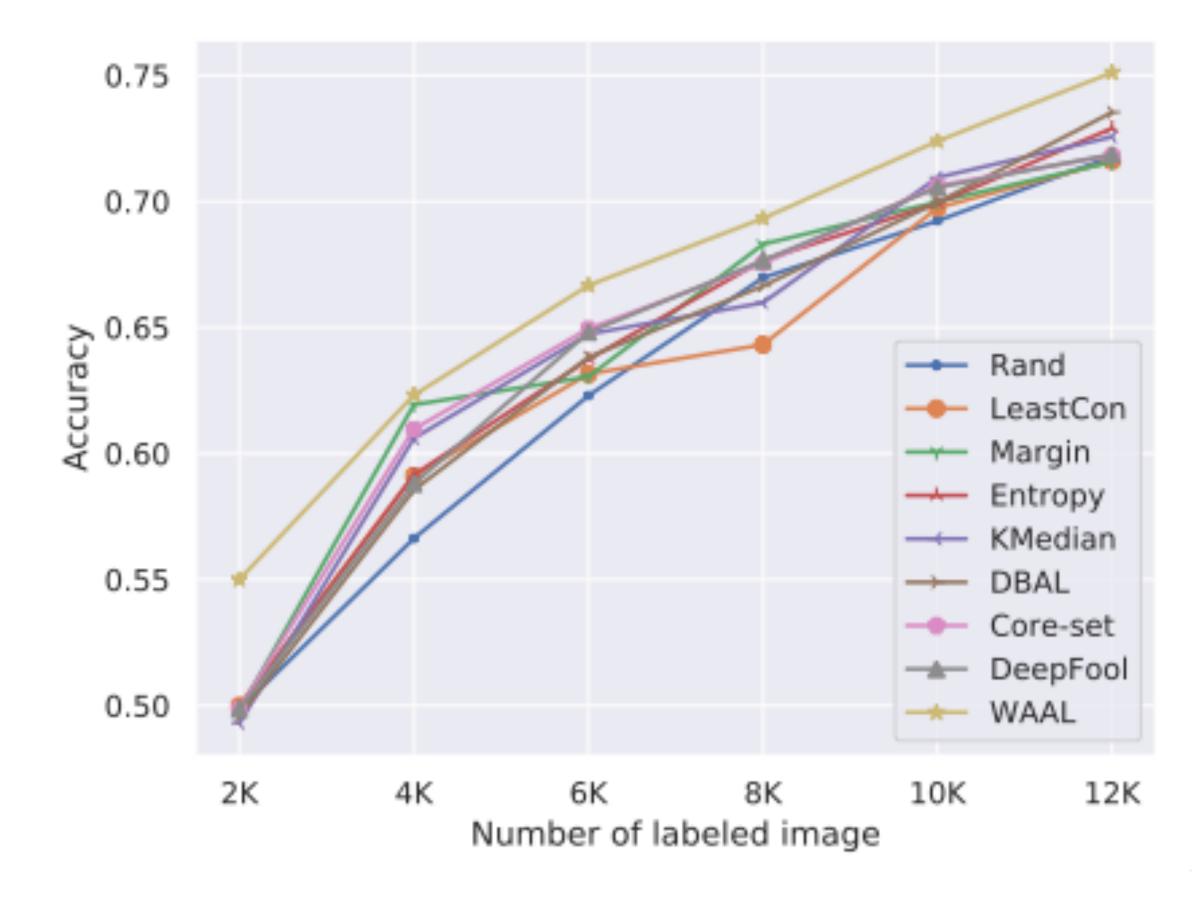
- WAAL (Wasserstein Adversarial Active Learning)
- Role of unlabeled data: Significant improvement in the initialization

SVHN

CIFAR-10

arning) /ement in the initialization

Wasserstein vs. GANs loss



CIFAR-10

- All baselines are leveraged with unlabeled samples via GANs loss.
- Consistently better!

Method	LeastCon	Margin	Entropy	K-Median	DBAL	Core-set	DeepFool	WAAL
Time	0.94	0.95	0.95	33.98	9.25	45.88	124.46	1

Table 1: Relative Average querying time, assuming the query time of WAAL as the unit.

Query time

Conclusion

- WAAL is a simple and efficient approach for deep AL
- Paper: <u>https://arxiv.org/abs/1911.09162</u>
- Code : <u>https://github.com/cjshui/WAAL</u>

ient approach for deep AL 0s/1911.09162 /cjshui/WAAL

