## Fair Representation Learning through Implicit Path Alignment

Changjian Shui, Qi Chen, Jiaqi Li, Boyu Wang, Christian Gagné

ICML | 2022

https://cjshui.github.io/pages/inv\_fair.html

# Machine learning in sociotechnical system



Candidate evaluations for job positions



#### Health risk assessment

## Algorithmic bias



#### **Intelligent Health**



Date Preprocessing Fair constraints during the training (Ours) Modify results after training

### Learning fair representation (high-level)



#### **Invariance indicates Fairness**



1. Invariant predictions on  $Z_1, Z_2 \rightarrow$  no discriminations 2. Different invariance criteria -> different fair notions

#### Sufficiency rule

Sufficiency rule: given the same predicted output  $\hat{Y} = y$ , the identical true output.

$$E_1[Y|\hat{Y} = y] = E_2[Y|\hat{Y} = y]$$

Not compatible with other popular fair notions. (e.g., demographic parity, equalized odds)

#### Invariance for sufficiency



Adjust representation  $\lambda(x)$  to ensure identical optimal predictors of subgroups.



- Adjusting (optimizing) representation to ensure optimal invariant predictor on Z.
- Representation viewed as prior information (or hyper-parameter)



# Check details in the paper

Code <u>https://github.com/cjshui/fair-path</u>